

TEC2014-53176-R HAVideo (2015-2017)

High Availability Video Analysis for People Behaviour Understanding

D1.3 v2

Simulator documentation

Video Processing and Understanding Lab

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Supported by

D.1.3 v2 Simulator documentation

AUTHORS LIST

Juan carlos SanMiguel Juancarlos.sanmiguel@uam.es

HISTORY

Version Date Editor Description

0.9 16 December 2015 Juan Carlos San Miguel Final Working Draft

1.0 17 December 2015 José M. Martínez Editorial checking

1.9 24 June 2017 Juan Carlos San Miguel Final Working Draft v2

2.0 25 June 2017 José M. Martínez Editorial checking

D.1.3 v2 Simulator documentation i

CONTENTS:

1. INTRODUCTION .. 1

1.1. DOCUMENT STRUCTURE .. 1

2. SYSTEM REQUIREMENTS .. 3

2.1. REQUIREMENTS DESCRIPTION .. 3

3. OVERVIEW OF WISEMNET ... 5

3.1. MAIN FEATURES .. 5

3.2. NODE STRUCTURE ... 5

3.3. SENSING .. 6

3.4. COMMUNICATION .. 6

3.5. PROCESSING .. 6

4. UPGRADES OF WISE-MNET ... 9

4.1. DESCRIPTION OF UPGRADED FEATURES ... 9

4.2. INCLUDED ALGORITHMS .. 9

4.3. DEVELOPING YOUR OWN APPLICATION .. 9

4.3.1. Required files .. 10

4.3.2. Steps .. 10

5. INTEGRATION OF 3D ENVIRONMENT - OVVV .. 13

5.1. DESCRIPTION OF WORK .. 13

5.2. OUTCOMES .. 14

5.3. SAMPLE RESULTS ... 14

5.4. EXPERIMENTS .. 16

6. INTEGRATION OF 3D ENVIRONMENT – UNITY3D 17

6.1. DESCRIPTION OF WORK .. 17

6.2. MAIN OUTCOMES ... 17

6.3. SAMPLE RESULTS ... 19

6.4. EXPERIMENTS .. 21

7. CONCLUSIONS ... 25

8. REFERENCES .. I

D.1.3 v2 Simulator documentation 1

1. Introduction
This document summarizes the work during the first year of the project for the task
T1.3 “Development and maintenance of a camera network simulator.” (WP1 Video
analysis framework) whose goal is to maintain a simulation environment for research
on (wired and wireless) camera networks. This simulator will enable quick prototyping
and testing of the prototypes developed in this project.

The following milestones have been defined during the first year of the project:

• MS1.3.1 simulator requirements

• MS1.3.2 Upgrades of the simulator

• MS1.3.3 Integration of 3D environments

1.1. Document structure

The document is structured in the following chapters:

• Chapter 2: Simulator requirements

• Chapter 3: Overview of the Wise-Mnet simulator

• Chapter 4: Upgrades of the simulator

• Chapter 5: Integration of 3D environments

• Chapter 6: Conclusions and future work

D.1.3 v2 Simulator documentation 3

2. System requirements

This section describes the requirements of the camera network simulator and the
required software packages.

2.1. Requirements description
The objective is to develop a simulator based on WiSE-Mnet for smart cameras. It will
address the limitations of sensor network simulators and integrate advanced features
of smart cameras such as collaborative processing, power management and the
integration of 3D environments. In this milestone, we present the requirements of the
overall system:

The design requirements of the complete system (see Figure 1) are as follows:

• A camera is defined as a four-component system with sensing, processing,
communication and motion capabilities. Each camera acts as an independent
node in the network and cooperate with other nodes to complete tasks.

• Generalized sensor data-types to define any type of physical process
information (e.g. visual data such as frames, metadata, packets exchanged
through network)

• Communication mechanisms: idealistic and real. Real communication should
consider network protocols and existing delays. Idealistic communication is
useful to test prototypes for collaborative processing.

• Smart camera resources: hardware descriptors of camera components are
needed to define the capabilities of each camera. The cameras must have a
“resource manager”

• Measurement of power consumption by creating models for each camera
component.

• Provide templates for quick development. All standard functions (e.g. sensing
frames, sending/receiving packets,…) must be in-built in the camera node so
future developments can focus on the processing aspect of the camera
network. Therefore a class-based design will be followed.

To ease the development of these requirements, the “overall system” has been divided
into the camera network simulator Wise-Mnet (“simulador de redes de cámara”) and
the 3D environment (“Motor gráfico 3D”), as seen in Figure 1.

D.1.3 v2 Simulator documentation 4

Figure 1. Overall system integrating Wise-Mnet (“simulador de redes de cámara”) and 3D

environments (“Motor gráfico 3D”)

D.1.3 v2 Simulator documentation 5

3. Overview of WiseMNet

For the camera network simulator, we use Wise-Mnet as the core simulator where all
the improvements and required features for the project are to be implemented. Here we
provide a brief description of its capabilities.

WiSE-MNet is based on Castalia/Omnet++ and enables the modeling of the
communication layers, the sensing and distributed applications of Wireless multimedia
sensor networks (WMSNs), i.e. networks with sensors capturing complex vectorial
data, such as video and audio. The environment is designed to be flexible and
extensible, and has a simple perception model that enables the simulation of
distributed computer-vision algorithms at a high-level of abstraction. It is available at
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

3.1. Main features
The main features provided are:

• Generic discrete-event simulation engine
• Generic modules interactions can be defined

o behavior is coded in C++
o interconnections/composition specified through a Network Description

(NED) language
o parameters can be set through configuration files

• Highly flexible and extensible with external libraries
• Network elements: nodes, protocols, channels – pro- vided (externally) as

simulation models (INET, MiXiM, Castalia)

3.2. Node structure
The overall structure of the network and node model is depicted in Figure 2. The
structure of the node model contains the same modules as the Castalia simulator
(sensor, application, resource, communication and mobility). However, WiSE-MNet
extends Castalia’s modules to provide functionalities for multimedia networks.

http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

D.1.3 v2 Simulator documentation 6

Figure 2. WiSE-MNet network and node model overview

3.3. Sensing
WiseMovingTarget: This module extends the WiseBasePhysicalProcess base
class/module to implement a moving target in a 2D ground plane. Targets are currently
represented as (bounding) boxes and can move according to different types of motion:
linear, circular, linear-circular and random. This configuration of the 2D target behavior
can be established in the omnetpp.ini file (settings) of the defined simulation.

WiseVideoFile: This module extends the WiseBasePhysicalProcess base
class/module to implement the capture process of a live video stream via files stored.
The path to the video file must be defined in the *.ini file of the simulation

WiseCameraManager: This module extends the WiseBaseSensorManager module
that implements the sensing logic of the node’s camera. The module is strongly related
to the type of physical process we are using. The WiseCameraManager has been
designed to support different types of sensing through the WiseCameraHandler
mechanism, allowing the user to easily add different camera models (e.g. projection
models). We currently support only the WiseCameraDetections model, which is a
simplified projection model that assumes a top-down facing camera observing targets
modeled according to the WiseMovingTarget module.

3.4. Communication
In WiSE-MNet , communication is done via packets whose format is encoded in *.msg
files. These packets depend on the developed application (e.g. the tracking algorithm)
and contain all the variables and data to be exchanged among nodes. Note that
OMNeT++ automatically generates two files *_m.cc and *_m.h for every defined packet
when the compilation of the project starts. These two files should not be modified.

Idealistic communication mechanisms: There are two “idealistic” communication
mechanisms that have been introduced: the WiseDummyWirelessChannel and the
DirectApplicationMessage. The first one changes the network properties (to idealistic)
seemingly from the application point of view, the second one is rather a “magic” direct
information exchange channel.

3.5. Processing
The processing is performed in the application layer of the node. Therefore, each node
can implement a different application layer or all the nodes can have the same
processing routines. Note that this processing layer does not only correspond to
tracking algorithms as other distributed algorithms can be implemented. The selection
of the application layer is done in the omnet.ini file and its configurations depends on
the defined parameters for the layer.

Types: The processing in WiSE-MNet can be performed via two mechanisms:

D.1.3 v2 Simulator documentation 7

• On demand via fromNetworkLayer function. This mechanism correspond to
replies to received messages from other network nodes.

• Periodically via timers using the timerFiredCallback function. This function
corresponds to repetitive tasks that the node has to perform (e.g. grab a video
frame and analyze its content every second). The timer type and alarm period
have to be defined.

D.1.3 v2 Simulator documentation 9

4. Upgrades of Wise-MNet

4.1. Description of upgraded features

The Wise-Mnet simulator has been extended according to the needs of the project
resulting in a new release. The research activities have been the following:

• Development of required resources for WiSE-MNet to use an Integrated
Development Environment (IDE) which enables quick prototyping.

• Improvements of original WiSE-MNet version: local processing,
synchronization, live video feed and in-node video analysis.

• Improvements of the 2D sensing modes: now directional sensing can be used
for Wise-Mnet defined by the depth, orientation and angle of view.

• Documentation of code and user guide (installation and development).
• Implementation of distributed tracking algorithms based on Kalman and

Information Consensus Filter for single target tracking. Implementation of
Information Consensus Filter algorithm for multi-target tracking using nearest
neighbor approach.

4.2. Included algorithms
The list of included algorithms is as follows:

• WiseCameraDPF It is a WiseCameraSimplePeriodicTracker that implements a

distributed particle filter algorithm. The algorithm uses a sequential aggregation
mechanism, exchanging the partial posterior approximated with Gaussian
Mixture Models. For more details the reader can refer to [1].

• WiseCameraKCF It is a WiseCameraSimplePeriodicTracker that implements a
distributed Kalman filter algorithm. The algorithm uses a consensus
mechanism, exchanging the final state among camera neighbors. For more
details the reader can refer to [2]

• WiseCameraICF It is a WiseCameraSimplePeriodicTracker that implements a
distributed Kalman filter algorithm via its equivalent information matrix
formulation. The algorithm uses a consensus mechanism, exchanging the
weighted final state among camera neighbors (information vector and matrix).
For more details the reader can refer to [3]

• WiseCameraICF-NN It is a WiseCameraSimplePeriodicTracker that extends
WiseCameraICF for multiple targets. For the association stage, the algorithm
uses a nearest-neighbor approach so tracks at one time-step are linked with
following one. For more details the reader can refer to [3].

4.3. Developing your own application
For creating a new application, the WiseCameraSimplePeriodicTracker base class is
provided which extends WiseBaseApplication. This class contains basic functions to
initialize resources, send/receive messages from/to network (or direct node-to-node
communication) and handling of control messages. Prior to process packets, this class

D.1.3 v2 Simulator documentation 10

discovers the communication graph for each node (i.e. neighbors nodes using network
communication).
The new distributed algorithm has to extend the WiseCameraSimplePeriodicTracker in
order to use the provided functionality. Please check the already defined classes
WiseCameraICF or WiseCameraKCF for examples of applications developed based on
WiseCameraSimplePeriodicTracker.

4.3.1. Required files

At least, one file of the following types is required:
Source files: WiseCameraXXXX.ned Description of your application using NED
language

WiseCameraXXXX.h Include file with the header of the application
WiseCameraXXXX.cc Source file with the code of the application
WiseCameraXXXMsg.msg Packet definition to exchange among nodes

Simulation files: omnetXXX.ini Configuration of the simulation for the new application

4.3.2. Steps

The steps for developing a new application are:
1. Define the new application as a new class (extending WiseBaseApplication for

generic processing or WiseCameraSimplePeriodicTracker for a distributed
tracker).

2. Create the structures and classes to be used within your new application.
3. Implement the functions startup and finishSpecific for the new application

requirements.
4. Implement the function handleSensorReading to handle the data provided by

the SensorManager.
5. Implement the functions fromNetworkLayer and

handleDirectApplicationMessage to handle received packets from, respectively
the network and direct node-to-node communication.

6. Functions handleNetworkControlMessage, handleMacControlMessage and
handleRadioControlMessage are optional.

7. Implement the logic of your application via the processing functions (see
following Figure).

Figure 3. Functions to be implement for developing a new application

D.1.3 v2 Simulator documentation 11

Note that the development of new application layers do not need to modify the sensing
(WiseMovingTarget, WiseVideoFile and WiseCameraManager) and communication
(WiseDummyWirelessChannel and Wireless-Channel) modules.

D.1.3 v2 Simulator documentation 13

5. Integration of 3D environment - OVVV
After defining the requirements of the camera network simulator in section 2 which is
based on the Wise-Mnet simulator (http://www.eecs.qmul.ac.uk/~andrea/wise-
mnet.html), this milestone describes the development of a camera simulator based on
3D environments.

5.1. Description of work

To create a camera simulator based on 3D environments, the following action points
have been defined:

1. Search and selection of related tools to simulate and edit 3D environments
2. Creation of the development enviroment

a. Installation of tools and libraries needed
b. Integration of the tool to simulate cameras and to simulate 3D

enviroments
3. Development of the camera functionality

a. Create/delete/modify a camera
b. Move a camera
c. Transmit/receive images from cameras
d. Extension to multi-camera enviroments

4. Development of a multi-camera controller: this sub-system will allow to provide
an interface between applications and the simulator

5. Experiments
a. Resources: Memory, CPU,…

b. Interconnectivity: bandwidth, FPS received,… Outcomes

For the 3D environment generator, we used the simulator ObjectVideo Virtual Video
tool (OVVV) which allows to load different 3D environments based on the steam
engine. Moreover, the DiVA distributed video analysis framework was used to provide
the interconnection functionality between cameras. The system developed is described
in the following figure:

Figure 4. System developed to integrate 3D environments (“Motor gráfico 3D”) within camera

simulators

http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

D.1.3 v2 Simulator documentation 14

5.2. Outcomes

The developed system allows to control multiple cameras installed in virtual
environments 3D simulated realistic scenarios. In addition, this system allows quick
development and remotely control of cameras, creating a separation between the
cameras management, simulator virtual environment and responsible for the control of
the cameras.

As a result, this work has been performed through the final degree thesis of Luis Perez
Llorente (Degree in Computer Science), defended in July 2015. Full details for the
design, experiments and conclusions are available at the report of this degree thesis.

5.3. Sample results
The following figures shows an example of a moving camera:

D.1.3 v2 Simulator documentation 15

Figure 5. Sample frames from a moving camera created in the 3D environment

D.1.3 v2 Simulator documentation 16

5.4. Experiments

A set of experiments was performed to:

• Test the use of memory and CPU
• Test the visualization of images a different resolutions (bandwidth)
• Test the modifications of camera properties
• Test the performance of the controller application

Thus a dummy application was created to connect to the created camera simulator. An
example of the obtained results is shown in the following figure:

Figure 6. Memory and CPU utilization of the dummy program created to test the simulator

D.1.3 v2 Simulator documentation 17

6. Integration of 3D environment – Unity3D

After completing the first development of the 3D environment for simulating multi-
camera systems with virtual data, an improved version was developed based on a
more recent game engine (Unity 3D) as opposed to the previous one employed
(source, dated from 2007).

This work has been developed in the context of the undergraduate thesis “Sistema
multi-camara distribuido basado en Unity” and the posterior contract in the HAVIDEO
project as technician (both by Mario Gonzalez Jimenz). In this document we provide a
summary of the main achievements which resulted in the ’Multi-Camera System
Simulator’ (MSS).

6.1. Description of work

The main objective of this work is to develop a simulator which provides virtual video
from multiple cameras. This virtual system must be able to manage several distributed
cameras in real time, configure camera’s properties and possibility to transmit data
(e.g. frames) to external applications. The Unity game engine3 is used as the starting
point to simulate realistic 3D environments which is extended with the desired multi-
camera functionality. In order to achieve the main objective, the following sub-goals are
defined:

• To study of the related state of the art including related multi-camera simulators
and available game engines to motivate the selection of Unity.

• To design and implement a system for controlling cameras remotely with
different location configurations (e.g. position, orientation) and acquisition
parameters (e.g. frame rate, resolution) to get information from the 3D
environment.

• To design and implement a system for supporting the simultaneous connection
of several third party applications (e.g. computer vision algorithms) to the multi-
camera simulator. This system uses a client-server architecture and considers a
server (integrated within the simulator), a communication protocol and an API
that will be integrated and used by future applications (i.e. clients).

• To design and implement a proof-of-concept example containing a 3D scenario
modeling the hall of the ’Escuela Politécnica Superior’ (’A’ building) and two
simple application making use of the simulator using standard computer vision
libraries such as OpenCV.

• To evaluate the functionality and performance of the system developed.

6.2. Main outcomes

The main outcome is a simulation tool which allows to handle multiple cameras into a
virtual scenario. Additionally, broadcast messages can be generated from each camera
(by sending frames through sockets) to external applications and vision algorithms. By
using the Unity game engine where we find the appropriate features for the start point

D.1.3 v2 Simulator documentation 18

developing our system, we build up a complete multi-camera visual simulator. This

simulator is referenced as ’Multi-Camera System Simulator’ (MSS). In Figure 7, the
MSS architecture are outlined with a multi-client server design. The Client-Server
architecture makes remote work possible as well as local work. With the API client
library developed, clients are able to communicate and to receive information through
the methods included.

Figure 7. MSS incorporates a Client-Server architecture allowing multiple connections

The MSS modules extend the native Unity’s features with a multi-camera system, an
asynchronous server TCP and more. These modules work as a plug-in, making
possible to incorporate the simulator in an existing Unity project or in a new one. To
incorporate it in an existing project, you only need to copy the MSS’s source folder
which contains all the MSS’s classes and code in to the root Unity project folder.

The development of this simulator is complex due to the implication of a variety of
technologies that work for specific purposes: image processing, multithreading,
sockets, synchronization logic, GPU programming and more. To an optimal

implementation, we make a modular design (Figure 8). The simulator is composed by
three modules:

• Virtual Word: this module is responsible for all operations related to the virtual
world and therefore a direct integration with the game engine (Unity). It contains
the virtual cameras, the cameras controller and all logic which implies using the
Unity Scripting API. By the Unity technical limitations, this entire module works
sequentially, synced and following an object oriented programming. This
module involves mainly GPU programming and synchronization logic.

• Buffer: the main purpose of this module is to store frames in main memory
temporarily. In order to get the maximum performance possible, this module is
implemented with multithreading. As it is explained in the next chapter, before
storing a frame in main memory is necessary an image conversion. So, this
module involves multithreading and image processing.

D.1.3 v2 Simulator documentation 19

• Server: this module contains an asynchronous server that allows multiple client
connections. It receives commands from clients, processes them and gives a
response. In order to attend the clients immediately, this module also is implemented
with multithreading. In this way, with independent threads, the performance of the
previous modules does not affect to server and the connection logic. In this modules is
involved sockets, multithreading and a ThreadPool which is explained in the next
chapter.

Figure 8. MSS Modules logic view.

6.3. Sample results

In order to test the functionality of the simulator, a dummy console application for Linux is
built using the API provided. This application connects to the simulator trough an IP passed it
on argument, and allows to create a camera, to generate a broadcast and to handle it visually
trough the User Interface library. Once the application is started, a minimalist menu appears

on console (Figure 9) where you can find options to establish connection to the MSS
simulator, create a single camera, change its properties and delete the camera from the
simulator.

D.1.3 v2 Simulator documentation 20

Figure 9. Screenshot of the dummy application.

In all experiments, we use the modeled scenario for the EPS building. Examples for the
pedestrians included in the scenario and comparisons between real pictures and the modeled

scenario are provided in Figure 10.

D.1.3 v2 Simulator documentation 21

Figure 10. Comparative between (a) pictures of the ’Alan Turing’ building and (b) virtual scenario

modeled.

6.4. Experiments

As experiments, we have tested the following:

• Check the overall system and functionality developed
• Evaluate the performance of the frame generation process
• Evaluate the performance of the frame coding process (JPEG or PNG)
• Test the computational resources employed.
• Monitor the network usage in different situations to test a distributed computing

environment.

D.1.3 v2 Simulator documentation 22

The following figures provide examples of the experiments:

Figure 11. Time to generate one RAW frame for different resolutions and graphic qualities.

Figure 12. Average conversion time for different resolutions and encoders (JPEG and PNG).

D.1.3 v2 Simulator documentation 23

Figure 13. CPU usage with one camera and different framerates.

Figure 14. CPU usage with several cameras simultaneously configured at 640x480 @ 25 fps.

D.1.3 v2 Simulator documentation 24

Figure 15. Real Framerate regarding several cameras working simultaneously. All cameras have

the same configuration: 640x480 @ 25. We expect 25 fps until it reach the maximum of frames that

our system is able to generate in one second.

D.1.3 v2 Simulator documentation 25

7. Conclusions

During the first and second years, an existing simulator for camera networks (Wise-
Mnet) has been upgraded with interesting features to achieve the project goals.
Moreover, two 3D environments have been developed and integrated within a camera
simulator. However, a complete system containing both the 3D environment and Wise-
Mnet has not been developed yet. Moreover, the 3D environment developed using the
OVVV tool provides synthetic data which is far from representing realistic visual data
and therefore, Unity3D has been employed to address this limitation.

Therefore, the future lines of work would focus on documenting the developed software
and the creation of repositories for its distribution.

D.1.3 v2 Simulator documentation i

8. References
[1] J. Farrell A. Kamal and A. Roy-Chowdhury. Information weighted consensus filters
and their application in distributed camera networks. IEEE Transactions on Automatic
Control, 58(12):3112–3125, Dec 2013.
[2] A. Kamal, J. Farrell, and A. Roy-chowdhury. Information consensus for distributed
multi-target tracking. In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern
Recognition, pages 2403–2410, Portland (USA), 25-27 Jun. 2013.
[3] C. Nastasi and A. Cavallaro. Distributed target tracking under realistic network
conditions. In Proc. of Sensor Signal Processing for Defence (SSPD), pages 1–5,
London (UK), 28-29 Sept. 2011.
[4] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In Proc. of the
IEEE Int. Conf. on Decision and Control, pages 5492–5498, San Diego (USA), 12-15
Dec. 2007.
[5] Geoffrey R. Taylor, Andrew J.Chosak, and Paul C. Brewer. Ovvv: Using virtual
worls to design and evaluate surveillanve systems. Computer Vision and Pattern
Recognition and 2007. CVPR '07. IEEE Conference on, pages 1_8, Junio 2007.
[6] Juan C. SanMiguel, Jesús Bescós, José M. Martínez, and Álvaro García. DiVA: A
distributed video analysis framework applied to video-surveillance systems. WIAMIS
'08. Ninth International Workshop on Image Analysis for Multimedia Interactive
Services. IEEE,, pages 207_210, Mayo 2008.
[7] C. Nastasi and A. Cavallaro. Wise-mnet: an experimental environment for wireless
multimedia sensor networks. Proc. of Sensor Signal Processing for Defence (SSPD),
Septiembre 2011

